9 research outputs found

    Performance of hard handoff in 1xev-do rev. a systems

    Get PDF
    1x Evolution-Data Optimized Revision A (1xEV-DO Rev. A) is a cellular communications standard that introduces key enhancements to the high data rate packet switched 1xEV-DO Release 0 standard. The enhancements are driven by the increasing demand on some applications that are delay sensitive and require symmetric data rates on the uplink and the downlink. Some examples of such applications being video telephony and voice over internet protocol (VoIP). The handoff operation is critical for delay sensitive applications because the mobile station (MS) is not supposed to lose service for long periods of time. Therefore seamless server selection is used in Rev. A systems. This research analyzes the performance of this handoff technique. A theoretical approach is presented to calculate the slot error probability (SEP). The approach enables evaluating the effects of filtering, hysteresis as well as the system introduced delay to handoff execution. Unlike previous works, the model presented in this thesis considers multiple base stations (BS) and accounts for correlation of shadow fading affecting different signal powers received from different BSs. The theoretical results are then verified over ranges of parameters of practical interest using simulations, which are also used to evaluate the packet error rate (PER) and the number of handoffs per second. Results show that the SEP gives a good indication about the PER. Results also show that when considering practical handoff delays, moderately large filter constants are more efficient than smaller ones

    Performance of hard handoff in 1xev-do rev. a systems

    Get PDF
    1x Evolution-Data Optimized Revision A (1xEV-DO Rev. A) is a cellular communications standard that introduces key enhancements to the high data rate packet switched 1xEV-DO Release 0 standard. The enhancements are driven by the increasing demand on some applications that are delay sensitive and require symmetric data rates on the uplink and the downlink. Some examples of such applications being video telephony and voice over internet protocol (VoIP). The handoff operation is critical for delay sensitive applications because the mobile station (MS) is not supposed to lose service for long periods of time. Therefore seamless server selection is used in Rev. A systems. This research analyzes the performance of this handoff technique. A theoretical approach is presented to calculate the slot error probability (SEP). The approach enables evaluating the effects of filtering, hysteresis as well as the system introduced delay to handoff execution. Unlike previous works, the model presented in this thesis considers multiple base stations (BS) and accounts for correlation of shadow fading affecting different signal powers received from different BSs. The theoretical results are then verified over ranges of parameters of practical interest using simulations, which are also used to evaluate the packet error rate (PER) and the number of handoffs per second. Results show that the SEP gives a good indication about the PER. Results also show that when considering practical handoff delays, moderately large filter constants are more efficient than smaller ones

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    Full text link
    In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares (S-NNLS) problem. We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R- GSM) to model the sparsity enforcing prior distribution for the solution. The R-GSM prior encompasses a variety of heavy-tailed densities such as the rectified Laplacian and rectified Student- t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM based method, we estimate the hyper-parameters and obtain a point estimate for the solution. We refer to the proposed method as rectified sparse Bayesian learning (R-SBL). We provide four R- SBL variants that offer a range of options for computational complexity and the quality of the E-step computation. These methods include the Markov chain Monte Carlo EM, linear minimum mean-square-error estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery performance, and is also very robust against the structure of the design matrix.Comment: Under Review by IEEE Transactions on Signal Processin

    Sparse Bayesian Learning Using Approximate Message Passing

    No full text
    Abstract-We use the approximate message passing framework (AMP) [1] to address the problem of recovering a sparse vector from undersampled noisy measurements. We propose an algorithm based on Sparse Bayesian learning (SBL

    Sparse Bayesian Learning Using Approximate Message Passing

    No full text
    Abstract-We use the approximate message passing framework (AMP) [1] to address the problem of recovering a sparse vector from undersampled noisy measurements. We propose an algorithm based on Sparse Bayesian learning (SBL

    A GAMP-Based Low Complexity Sparse Bayesian Learning Algorithm

    No full text

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    No full text
    corecore